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1. Introduction 

Most of our limited knowledge of string theory is contained in prescriptions for computing 

scattering amplitudes for various on-shell physical external states. The two main approaches to 

the construction of scattering amplitudes are the path-integral approach pioneered by Polyakov [l] 

and the operator approach [Z]. Amongst the plethora of constructions, Di Vecchia et al. [3] (in 

an operator formalism) and Petersen et al. [4] ( in a path-integral formalism) have developed an 

approach based on the notion of sewing together three-string vertices into tree or loop amplitudes 

for arbitrary numbers of external string states. This is the so-called covariant loop calculus. what 

is interesting about their approach is that it appears, at first sight, to offer an extension from 

on-shell to off-shell string amplitudes. The off-shell extension introduces a projective invariance 

associated with each external leg. 

When the external states are put on-shell, the factors in the amplitude associated with the 

projective freedom formaLly reduce to unity, and the amplitudes become formally identical to those 

obtained in the standard Polyakov approach. The equivalence is straightforward at the one-loop 

level, and presumably holds at higher loops as well 151. 

This equivalence is not necessarily a good thing, however. The problem is that Polyakov 

amplitudes are in general ill-defined [6,7,&g]. Io corners of punctured moduli space where loops are 

isolated on external legs, the amplitudes receive contributions which contain an on-shell propagator. 

For massless-vector external states, the numerator also vanishes (because of gauge invariance), and 

so these contributions to the amplitudes contain a ‘O/O’, which is to say, they are ill-defined. 

This difficulty shows up in all bosonic string theories, and in all superstring or heterotic-string 

theories with at least one broken space-time supersymmetry. (Massive external states require a 

regularization and renormalization scheme, such as that discussed by Weinberg [lo].) 

Even off-shell, as we shall see, the formalisms ofrefs. [3,4] in general yield expressions containing 

improper non-localities; the on-shell limit, when taken carefully, reveals not only a failure to resolve 

the ambiguity in the Polyakov amplitudes, but an ‘essential singularity’ in the momentum invariants 

to boot. It comes as no surprise that the low-energy Limits of these would-be off-shell string 

amplitudes are not off-shell amplitudes of a gauge field theory, but are pathological as well. 

As we shall show, it is possible to cure this difliculty, and thereby resolve the ambiguity in on- 

shell Polyakov amplitudes in a fashion known to be consistent with gauge invariance and titarity, 

by making special choices of the projective transformations associated with the external legs in 

the covariant loop calculus. This choice yields a set of off-shell amplitudes which are sensible, 

consistent, and (as it turns out) modular-invariant. 

In an ordinary field theory different choices of gauge or field variables will yield different sets 
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of renormalization constants. In the string case we are dealing with sets of amplitudes which are 

not derived from an underlying string field theory, so care must be taken to ensure that the various 

amplitudes yield a consistent set of renormalization constants; our choice does. This is, loosely 

speaking, equivalent to requiring all loop amplitudes to be defined using the same field variables. 

The algebraic structure of these amplitudes is similar enough to that of Polyakov amplitudes (after 

resolving the ambiguity in the latter) that one can readily adapt the calculation of renormalization 

constants [6,7,6,9] to the off-shell case. The off-shell amplitudes we will present can therefore be 

regarded as the amplitudes that would emerge from a consistent string field theory. 

In this paper, we will demonstrate explicitly that our choice of the projective transformations in 

the covariant loop calculus amplitudes resolves the momentum/pole ambiguities for the two-, three-, 

and foor-point one-loop amplitudes with massless external states. We also present an argument 

valid for arbitrary numbers of external legs. The choices of projective transformations fall into a 

simple pattern w&h allows for a generalization to all M-loop, N-massless vector amplitudes. A 

key underlying principle for our scheme is off-shell modular invariance which, though not required 

by unitarity as is the corresponding on-shell invariance, is nonetheless natural for a closed string. 

Although alternative operator formalisms exist for constructing string loop amplitudes [ll], 

it appears that without the significant modificationa necessary to exhibit the projective invariance 

manifestly, they would not admit similar prescriptions. For string field theories, the requirement 

is more stringent: candidate theories must resolve the on-shell ambiguities, and resolve them in 

a fashion consistent with gauge invariance, or else they are simply wrong. (Although we will not 

discuss open-string amplitudes, similar ambiguities appear in that case, and procedures similar to 

ours may be used to resolve them. Open-string field theories must likewise resolve them.) 

The present work grew out of the calculation of renormalization constants in the string-based 

approach to perturbative QCD [7,9]. It is possible, using a prescription due to Minaban [6], which 

violates momentum conservation in favor of preserving modular invariance, to resolve the ambi- 

guities entirely within the framework of on-shell amplitudes; and one can demonstrate that this 

procedure gives the correct answer (91. An off-shell formalism such as that presented in this paper 

is thus not necessary for practical calculations. But the M&&m procedure is nonetheless rather 

mysterious, and the off-shell constructions in this paper can explain why it works. 

In the next section, we present the one-loop amplitudes obtained from the covariant loop cal- 

culus [3,4], emphasizing their projective and super-projective invariances. In section 3, we review 

the ambiguity in Polyakov amplitudes that arises in the regions of punctured mod& space where 

loops are isolated on external legs, while in section 4, we examine the related difficulties in the 

amplitudes of the covariant loop calculus. In section 5, we present a choice of projective trans- 
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formations which resolve these difficulties. In section 6, we show how this choice works in the 

three-point amplitude, while the corresponding resolution in the four-point amplitude is discussed 

in section 7. In section 8, we present a general argument for the N-point amplitude. This choice 

yields a consistent set of renormalization constants, as we demonstrate in section 9 by calculating 

the two-point function. In section 10, we present a more general set of choices for the projective 

transformations that also resolve the ambiguities and non-localities. Appendices I and II contain 

summaries of the covariant loop calculus for bosonic and super- strings, respectively. In appen& 

III we give a brief review of the fermionic formulation of four-dimensional h&erotic strings, while 

in appendix IV the reader will find our conventions for the closed string used in the body of the 

paper. 

2. One-loop Amplitudes in the Covariant Loop Calculus 

We will consider amplitudes in h&erotic string theories using the fermionic formulation [12] 

(see Appendix III for a brief review). Taking the standard one-loop Polyakov amplitude, and adding 

the terma dictated by the covarimt loop calculus (see Appendices I and II), the N-point xmmlesa 

vector amplitude in a four-dimensional h&erotic string becomes 

1 
dN = 2(16x1) 

XN/1-‘(2g)N T’1,,“I . ..T”NmNW 

J 
dir - r, (ImTY x / (&‘t&d&d~u )Im / @d’vi) ~C;Z[‘$) 

68 
fj [,-a+ v,~(o))-wI~~ (e’~G‘(o~(0)) --Xkf’lr 

x n rp 
e 

[ 

Xk- k, 1 ;“““;;s;, Jzz ‘:I B1Vf(o) 
. ’ m&(q)1 +7 

‘“3))] 

I ’ ) B “3 vj t3 ,3 t. , F i<j [ I ;3: (iii - i7j) (2.1) 

- 9i18jadm’n,G,v ;T [ 1 
+ iJr;(Bi~Ojrki. cj + 8. 0. k. $4 LJ I ' ei) GF[ ii](~i - ~jj) 
- iA(@i3eidkj ‘6; - 8jsBjrk; . ~j) kB(c; _ i7j) 

f &ej+ ci c j GF 



The integrations over the Grassmann parameters O;J automaticaLIy seiect the terms multi-linear in 

the polarization vectors. The parameters Bi3 also play the role of supercocirdinates for the right- 

mover superstring (see Appendix II). The modular parameter, 7, is integrated over the fundamental 

modular region of the torus, while the Koba-Nielsen variables vi run over the torus specified by +. 

The vectors 0’ and p’specify the boundary conditions of the world sheet fermions on the torus with 

a~ representing the boundary conditions of the world sheet fermions carrying space-time indices. 

Polchinski [13] and Sakai and Tanii [14] h ave calculated the over-all normalization. The inverse 

string tension is X = xa’, and our conventions for closed string Green functions on the torus are 

given in Appendix IV. (These conventions are designed to minimize the number of xs shuBed 

around in explicit calculations.) AU calculations in the body of this paper are in Minkowski space 

with metric (t - - -). Convergence is provided where necessary by rotation to Euclidean space. 

For sectors containing FLamond zero-modes there are technical complications which alter the 

form of the amplitude (2.1). However, these sectors contribute only to parity-violating amplitudes, 

which are not relevant to any of our discussions. 

The Vis embody the projective invariance inherent in the amplitude, and they play a central 

role in our constructions. The projective transformation functions for the bosonic left-movers are 

v,(z) = 
a;= + b; 

CiZ t di 
addi - bici = 1 

while for the superstring right-movers the superprojective transformations [15] are 

(2.2) 

-- Vi(Z) = (vf(z),v;(z)) 

where z = (7, e) is a point in superspace and 

v;(z) = z; +I; + B(T;+$ 
I I I I 

v:(z) = T;f + & -1+ ;&5i 

CiZ+di + e 2.t + 6. * t 

(2.3) 

a;& - &E; = 1 (2.4) 

The covariant loop calculus construction requires the projective transformations to satisfy 

JqO) = pw (2.5) 

while the superprojective transformations are required to satisfy 

ri(O, 0) = (e-a*‘TG, -i~e-‘*“‘ei3) (2.6) 

As discussed in Appendix II the factor &?%z--‘*~ associated with & arises from the Jacobian 

of the transformation from the Y; to the usual torus variables c; = - ln~i/Zni, while the factor of 
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i arises f&m di&rences in the conventions for the Grassmann variables. In addition, there is an 

overall complex conjugation for the right-movers of the closed string. These constraints leave us 

with two complex and one Grassmamian degrees of freedom. At this stage, it would appear that 

we can choose these at will without affecting the on-shell limit, /of = 0 and ki. Ei = 0. As we shall 

see later, that is not correct. 

For the expressions appearing in the amplitude (‘Ll), these various constraints give us 

v;(o) = !y 
n=o = d-= 

, 

N(O) = ($ +B-&) w,B)~r=o,a=o 

= J;l _ ;~e-+~ei3ifij2 

D2VF(0) 

(m;(o))~ = 
&(4i + idF%e-'""?iOi3) 

(2.8) 

(2.9) 

We will eventually wish to choose these constants so as to make the amplitude (2.1) well- 

~- defined. First, however, we must establish the need to do so; that is the topic of the next two 

sections. 

3. Ambiguity in Polyakov Amplitudes 

In this section, we review the ambiguity that arises in Polyakov amplitudes [6,9]. This ambi- 

guity occurs for amplitudes with any number of external massless vectors, but is explained most 

easily in the three-vector amplitude. Putting the external momenta on shell in equation (Zl), the 

E, . E, Tr(T”1T”*T”~) term in the Polyakov three-point amplitude is 

x ~;s(Vn)(h. %d&J) + k2 . &(P213))) 

+ ah. k,(~~(~n)~~~ kz + (?:B(&J)EJ. kl)GF 

+ X(ea .kth. h - Es ksk,. k,)c,[~:](~t,)G~~~;](~t,)c,[~:](~,,)) 

xG~[~~](-YII)CF[~~](-~*S)GF[~~](YI~) 

x -P Ah . k>GB(v,2) t Xk2 . kxGB(vn) + Xk, . ( W&,)) 
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where a~ and & are the boundary conditions on the tams of world sheet fermions associated 

with the gauge *OUP of interest ad ~;j = Yi - Vj. If the theory has unbroken space-time super- 

symmetries, the terms involving only bosonic Green functions vanish after summing over sectors 

because the partition function vanishes; in nonsupersymmetric theories, alI terms are relevant. We 

can integrate by parts to remove the double derivative of the bosonic Green function, which gives 

(with an appropriate analytic continuation in the momentum invariants there are no boundary 

contributions from the contours around each of the other YS) 

-iA& Tr(T”‘T’+T”) dzyd’vt (Imr) 

C3 k&(%)(k~ . k&&Q) - k? . k&&)) 

t ES k&@,)(k, . k,k:B(i71,) + kl. k&&))) 

- kt . kddB(ez)cs. k, + b,(~-,,),, . kl)GF 
[ I 

;; P.11)’ 

-(cl.klkI.kl-C,.k,kI.k3)GF[~:](~~I)GF[~:](~~ll)GF[;;:](~23)] 

(3.2) 

erp(% .~GB(YI~) + Ma. ksGB(Ys) t Xkl . kzG&)) 

This term in the azplitude is proportional to the momentum invariant k; . kj, which vanishes on- 

shell; it might thus appear that this contribution vanishes more strongly than the usual kinematic 

vanishing of the three-point amplitude. That is not right, however, because there are regions 

of punctured module space which produce poles in the momentum invariants, thereby yielding 

contributions to the 0 function [6,7]. 

Such apparent pole contributionst arise only in the regions of punctured moduli space where 

Koba-Nielsen variables are pinched together. Using the short distance behavior of the Green iimc- 

tions, 

&El@) = -& + O(F) GF (3.3) 

the poles in the ki . kj channel arise from integrating over the Vij in the region ~i z Vj. The only 

contributions are from integrals of the form 

I 
dlvijyijI--l--Jwki/* = -v& 

* 3 (3.4) 

1 In fact, because of the additional momentllm factors in the numerator which cancel &he pole, these apparent 
poles do not give rise to poles in the physical S-matrir; they are fake. 
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For example, to extract the kl kz pole horn the el ~2 terms we perform the integral around 

~11 s 0 so that the relevant terms in the amplitude (3.2) reduce to 

-iAcI . ~2 Tr(PTa’Ta’) d’vla dPvz3 (I&T) 

x (~AGY - GF[ ~j(Tiz3)z) 

x &~YII~-wr-l (-63 . k, ks . k3 + ~3 . k, kl . k3) 

x GF[ ;o”](-w)G-[;j(va) -+(h ka + h . ka)G&)) 

= -is, . c, ~(TD’Ta’T”‘) 
~3 k, kl . ka - 63 . kl kl . k3 

Zk, . k, 

x (k;(L) - GF[;;](+) GF[;~(~,GF[;~](-~, 

(3.5) 

Collecting all the terms which contribute and using momentum conservation to replace kl . cJ 

with -kl . EJ, we find that the kinematic factor associated with the Ed . e1 term is 

c, . ~1 k, . c, 
kl . ka t kt . ka 

h .h 
+ (h . ka + ka. h + h. kt)(& + & 

0 
(3.6) 

which is ill-defined on shell, since both numerators and denominators vanish. 

This difficulty persists for all N-point amplitudes; in the region of punctured mod& space 

where the loop is isolated on an external leg, the amplitude is ill-defined. In the case that the 

isolated leg is the last one, the denominator is 

i<zN ki * kj = J&/z = 0 (3.7) 

while the numerator vanishes because of gauge invariance. (This configuration of Koba-Nielsen 

variables would correspond to a mass renormalization of the massless vector if the numerator did 

not vanish.) 

Within the context of the Polyakov path integral hEmhan [6] has proposed a prescription for 

dealing with this ambiguity. The prescription relaxes momentum conservation in such a way so 

that modular invariance is maintained. All external momenta and their sump = xi k; are required 

to be null vectors, so that 

gk;.kj=O and k; = o (3.8) 
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In addition, p. c is set to zero. Factorizing a four-point amplitude legitimates the use of this 

prescription for the three-point amplitude [9]; the kinematic invariant of equation (3.6) becomes 

simply 

-31 ~1 k1 . ES (3.9) 

4. Inconsistencies in the Covariant Loop Calculus 

The ambiguity in Polyakov amplitudes displayed in the previous section has a painful echo in 

the covariant loop calculus, as we shall show in this section. In particular, for a general choice of the 

projective transformations Vi, the on-shell limit is ambiguous; and different N-point functions are 

not calculated consistently. In particular, if we look at the low-energy limit, the values of the various 

renormalization constants depend explicitly on the parameters of the projective transformations so 

that the 0 function, for example, is not well-delinedt. In following sections, we shall see how the 

echo can be silenced by a suitable choice of the parameters in the projective transformations. 

To simplify the discussion, in this section we shall retain only the terms relevant to a four- 

dimensional bosonic string. It is straightforward to include the additional superstring terms as given 

- in the general amplitude (2.1); their inclusion does not eliminate any of the problems displayed 

in this section. In the covariant loop calculus, the three-vector amplitude for a four-dimensional 

closed bosonic string is (see Appendix I) 

AS =-is/, &ld’v,d’q (Im~)~C’j2[~](r) 

x ij[&,“*:i”,-**:*‘“< 

i=l 
]~~p~~k~~kjG~(~~j))R(1,2,3)L(1,2,3) (4’1) 

i<j 

where the right-mover contribution is 

Wl,2,3) = 

-X(-E, .k,(ie-2*“l- - i, cl4 + ij t 31. k,d,(c,,) + ~1 . k&B(i7,3) 

X(-s~.k~(ie-z~a~y~s~st~)-.,.k~~.,,,ii.,.kse.l,: 

x (-Ed. k3(ie-‘““‘?3d3 f i) - ~3 . k,h&u) - ~3 . k&&)) 

(4.2) 

’ An malog~~ problun would 6% in field theory if one attempted to calculate differcnr N-p&t functions 
in difkent Il~wtr; the P function computed from, say, Zr and Z, would not agree with that computed 
from .% and ZA. In addition, physical Green function would come out wang, becslue the wsvefunctian 
renovation would have been calculated in a different gauge from the N-point Green function. 
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while the left-mover contribution is 

Let us now make a simple choice of the parameters, di = e--ir”i, 2; = ei*‘:, and E{ = 

-e2*‘zi/2d~, and repeat the caiculation of section 3. The details are quite similar, except that 

now the momenta are off-shell. Once again, after an integration by parts, the ~1 ~1 Tr(TalT”rTDa) 

term is 

dp-ixz; 7 Tr(T”‘T’=‘T”‘) E, E, 

~2 (I-~)~C~z[~](~)e~(~ki.kl~G~(~ij)) 

x dB(ik) ( E3 h6B(YlJ)(kl hdB(J,2) - h hdB(Y13)) (4.4) 

xGF[~~](-YII)GF[~OC](-YS)GF[~~](Y~~) 

This expression does not vanish since the ki kj # 0. Extracting the kl k, pole from the Y, rz v2 

region, we find the ratio of momenta 

El El 
-e3. k,ka . k3 + ~3 klk, . k3 

h . ka 
(4.5) 

The other terms yield similar results. Combining terms using momentum conservation, we arrive 

at an answer identical to equation (3.6), dropping terms proportional to k3. c3: 

e, . ~2 k, . c3 
( 

kz . kx t kz . k3 

kl . kr 
+ (k, . h + ka . k3 t h . k3) (A + &-)) (4.6) 

The ratio of momenta in the coe&ient of E 1 . ~2 kl . ~3 is now quite well-defined; neither 

denominator nor numerator vanishes for general off-shell momenta. Unfortunately, the appearance 

of a non-trivial ratio of momenta is a disaster; it signals that the on-shell limit is an essential 

singularity of the theory. To see this explicitly, let us take the on-shell limit in two different ways. 

In both cases, take k3 . ES = 0. First, let k: = 0, while k, and k2 are still arbitrary; the kinematic 

invariant of equation (4.6) then becomes 

&+(k,.ks-k:)(k 
,.,“::.k,)) =’ 
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Par the second tit, take k: = ki = k: = S. In the latter case, equation (4.6) becomes 

(-3) 3 2 
----s- 
(-42) 2 (-J/z) 

~8 (4.8) 

so that the on-shell limit is undefined. Like the case of on-shell Polyakov amplitudes discussed 

in the previous section, the difliculties here are not restricted to the three-point function; if we 

consider the contribution to the N-point function coming from a loop isolated on the N-th leg, we 

will find a momentum ratio 

Xi,, k ’ klv 
-&j<N ki. kj = k& -2;);“., kj (4.9) 

This ratio also depends on the way the on-shell limit is taken. 

It is clear that this disease cannot be cured by adding in contributions fromregions ofpunctured 

moduli space where N - 1 legs do not come together. In the three-point amplitude, these yield 

unambiguously vanishing contributions to the coefficient of ~1 ~2 kl . ~3 in the on-shell limit, and 

thus cannot make the ill-defined ratio of momenta well-defined. For higher-point functions, the 

contributions of these other regions do not vanish identically, but ale well-defined on-shell, and so 

cannot resolve the problem. 

Another way of expressing the problem is to look at the limit of infinite string tension, where 

we expect to recover the loop amplitudes of a gauge theory which is the low energy effective field 

theory. Instead, we find amplitudes with pathological non-localities yielding an ill-defined S-matrix. 

It is not enough to End a prescription that simply resolves the ratio of momenta to a pore 

number, however. We must ensure that resolution in different N-point functions is consistent. The 

problem is that different choices of the projective transformations yield cUerent values for the 

renormalization constants. But the string theory has only one coupling constant, and there is only 

one kind of external field whose wavefunction renormalization enters into the amplitudes we are 

considering. Thus once we have calculated the values of two+enormalization constants, say those of 

the physical three- and four-point amplitudes, we can determine the renormalization constants of 

all other physical amplitudes, in particular that of the two-point amplitude - the massless vector 

wavefunction renormalization. What happens if we look at the two-point amplitude itself? After 

an integration by parts to eliminate the e;s terms, the bosonic terms in the two-point amplitude 
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are 

Al=- ’ -(2g)‘Tr(F.‘=‘) /, & 
32~~ 

/ (@&=%‘i,) /Td%(W~C;-$](~) 

6B 

x lee rImvldI/~k:/*Ie-*‘m~d3(Xk:/” exp(Xh . kaGB(w)) 

X kl. Karl . ~2 ~:B(~~~)(~B(~%) - w - $$-! + i) +longitudinal) 

(4.10) 

The value of the wavefunction renormalization is simply the coefficient of El ‘~1. This coefficient may 

be adjusted at will by choosing different projective transformations without modifying the other 

‘bare’ N-point functions, thereby changing physical S-matrix elements, and spoiling the consistency 

of the results. (The 0 function provides an additional consistency check, as it should match known 

results for gauge-theory p-functions in the infinite-tension limit.) 

Thus without making a special choice of the parameters of the projective invariances associated 

to each external leg in the candidate in the amplitude (2.1), the on-shell limit is ill-defined. Are there 

choices which make the on-shell limit well-defined, and yield consistent renormalization constanta? 

There are; and in the following sections, we show how to make such choices. 

5. Fixing the Projective Invariance 

We seek a choice of the parameters of the projective transformations that will make the on- 

shell limit well-defined and gauge invariant, with consistent renormalization of different N-point 

amplitudes. Within the context of the string theory, we must also require the integrand to be well 

defined on the torus. It would also be nice to have world-sheet supersymmetry survive, so that 

spurious Fl formalism states manifestly decouple off-shell as well as on-shell. 

One such set of choices for the super projective transformation parameters satisfying the desired 

conditions is given by 

,d;, = enIm~ierG8(u~-vi+,)/3 

ezImi 
G = IF(ti:B(i7i - iii+i+l) + i/2) 

(5.la) 

(5.16) 

;r; = -Ge= GF (5.lc) 

where YN+~ G y. The somewhat complicated appearance of this choice is an artifact of the use of 

the torus variables vi = hq/2xi; aa we shall see, it leads to a simple modification of the standard 
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Polyakov amplitude. We will explicitly demonstrate the suitability of this choice for the two-, 

three-, and four-point amplitudes. While this choice appears to attach significance to the labelling 

of the Y’S, as we shall see in section 10, it is merely a simple example out of a family of choices that 

treat the Koba-Nielsen variables of the other external legs symmetrically. 

With this choice of superprojective parameters the off-shell factors in the IV massless-vector 

amplitude (2.1) are 

= /&/~~:/-e-*h:‘mh 1 + +3““=‘&7;,2) 

G&v; - vi+,) - Bi30i+l,3G 

=xp -iv’&,bi ki 
i 

____ 
8 

= 
>) 

= =xP (id%&. ki(8.+I,3GF[$h - q+l) +e&:,(iii -iii+,))) 

90 that the N massless-vector scattering amplitude is 

AN= ’ -x~~~-~(~~)NT”~,,~~...T.N~~“N 
2(16+) 

/, &/ (f&k, d&s d&x& ) h.n~/, (@‘vi) ~$437) 

&B 
seIp [,Kii GB(pi - vj) - &8j3XKij G,[ i$i+ - rj) 

f ia(-%ejrEji + Oi,OjaEij) GF 

- i~(eiabEij - ejJOj,Eji) tiB(yi _ vj) 

+ eidSj,ci . ~j Gp 

where (i < j) 

Kij = 
&+l,jkj/2 t ki. kj , ifN 

&,Ikf/2 t ki. kj , j=N 
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Eij = E<. (6i+l,jki + kj) (5.6) 

Since neither K<i nor Eii appear in the amplitude (5.4), we may define these to vanish. This 

off-shell amplitude is the same as the standard Polyakov one with the insertion of the factor 

[ 1 1 
(5.7) 

+ idith%+,,3ki. E; GF i: (R - %+l) - iv’%he~,ki. E; d&ii3 - v;+~) 

in the integrand. The Kij and Eij satisfy the important momentum conservation properties 

(5.8) 

These are the basic properties which, as we shall show explicitly, resolve the on-shell ambiguity in 

the ratios of momenta. The first of these conditions is reminiscent of M.&&an’s condition (3.6). 

Our choice also maintains the world sheet supersymmetry necessary for the decoupling of the 

spurious Fl formalism states. This decoupling results from a cancellation between bosonic and 

fermionic Green functions. Since OUI choice consistently replaces k; kj with K;j and e; kj with 

Eij throughout the amplitude, the decoupling of the spurious states is not affected. As a simple 

example of this decoupling consider the region where all Koba-Nielsen variables are close so that 

the loop is isolated on a tadpole. In this case, the leading singularity is due to the spurious Fl- 

formalism tachyon [IS]. However, using the short distance behavior of the Green functions (3.3) 

and the correspondence of bosonic and fermionic Green functions (after integration by parts), the 

coefficient of this singularity vanishes manifestly and the spurious tachyon decouples. 

What is more striking is that the amplitude (5.4) is also modular invariant. This followa 

from the modular transformation properties of the bosonic and fermionic Green functions given in 

Appendix IV. The invariance under 7 -+ r + 1 is straightforward, and the Grassman integrations 

make the invariance of the factors involving fermionic Green functions and derivatives of the bosonic 

Green functions under r -+ -I/T easy to demonstrate as well. This leaves us with the question 

of the invariance of the exponential of the bosonic Green functions; with our choice the potential 

violation appears as a factor fli IT/**)/‘* niCj ~TI’*~+/* which is unity because of momentum 

conservation. Without the additional off-shell factors of equation (6.7) the amplitude would not, 

of coarse, be off-shell modular invariant. 
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On-shell, modular invariance is necessary for unitarity. Off-shell, it is nice, because it makes 

the restriction of the 7 integral in equation (5.4) to the fundamental region a natural, rather than 

an ad hoc, prescription. It is also natural, since it is an off-shell extension of an on-shell symmetry. 

(We stress that unlike Giddings, Martinet, and Witten [Ii’], or Kaku and Lykken [IS], we do not 

mean ‘off-shell modular invariance’ merely in the sense of covering the modular region properly, 

or of regaining modular invariance in the on-shell limit; we mean honest-to-goodness modular 

invariance of off-shell amplitudes.) While we shall not prove any stronger statements, we suspect 

that its significance is much deeper, that modular invariance off-shell is necessary for the existence 

of a well-defined on-shell limit. This suggests that a consistent string field theory must maintain 

modular invariance off-shell as well as on-shell. 

6. Resolution of the Inconsistency in the Three-point Amplitude 

Let us first see how our choice of projective transformations resolves the unwanted ratio of 

momenta in the three-point amplitude. After performing the Grassman integrations, and then 

integrating by parts, the amplitude (5.4) becomes 

d’vld2v2(hr) c C;” 68 (6.1) 

XR(1,2,3)L(1,2,3)=xp(XK,~~~(y~) + XKmG~(vas) t AK&&~)) 

where 

R(1,2,3) = E, 

+ EJI~B(~,~)(K,I~B(~,I) + K,,C&,,)) 

- CI . QKH ~dh)Ea + k~(h)E,, GF ( ) [I ;; (i%2)2 
- ~1 .=a(~=~13 - EI,K~~)G~[~:](~,~)c~[~:](~,~)G~[~:](~~~) + cyc~c] (6.2) 

- (El~‘-~) + EIJ&(%)) (E&(ih) - ~2l&(~l,)) 

x (--B(~I~) - E&B(~23)) 

+ (EI&IGF [ I p”; (RP)~(&I~B(~%J) + &&B(~Q,)) + cyclic) 
+(E E E 11 13 31 - EI.E~&+F[ ;;](h,G[ ;;](h,G[ ;;](i~,) 

and L(1,2,3) is the same as in equation (4.3). 
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After using the momentum conservation conditions (5.8) and (5.9), R simplifies to 

RL2,3) = 
1 
81 . E2 E&‘I~ i;B(k) -~B(ih)~B(~*l) + i:,(n,s)&B(i723) 

( ( 

+ ~:B(Y~~)~AG)) t G~[;~:](~~~)G~[~:](~,~)G~[~~](~,~) 

+ (~dh) - d,(~,,))G,[~~](~,~)‘) + cyclic] 

+ -&En&z 
[( 

~dv,d - &J(W) (aw + G.,(iG)) (&(&) - d&,,)) 

+ (GF[ ;;](~*1)2(&(%) - b:s(ik)) + cyclic) 

- G[ ;;](WF[ ;$WF[ ;$%I,] 
(6.3) 

As discussed in section 4, the problems in the amplitude occur in the regions where the loop 

is isolated on an external leg. There are three such regions corresponding to the three pinchings 

of the Koba-Nielsen variables. The (c . Iz)~ terms do not contribute in these regions because the 

coefficients of such potential contributions vanish. This is as expected, since otherwise the masslesa- 

vector amplitude would be divergent in the on-shell limit. After extracting the various pole terms, 

one finds 

A,=-;2 T$F[T”‘, P])(sl . s2 s3. k, + cyclic) 

X 1, & /, d’v(Im7) c C;” [;] (7) =X(K’3+K”)Gg(u) (6.4) 

x (d;(c) - G[;;]($r [ ;I] (~)GF I;:] t-v) 

so that the on-shell ambiguity has disappeared. The reader will recognize this as an equivalent of 

the usual Yang-Mills three-point vertex multiplied by a loop factor. 

7. Resolution of the Inconsistency in the Four-Point Amplitude 

We shallnow show explicitly how our choice of parameters (5.12~5.1~) resolves the ambiguities 

in the four-point amplitude. We shall focus on one particular term, but the behavior is similar for 

all terms in the amplitude (indeed, the infinite-tension limit is once again identical to a calculation 

performed elsewhere [9]). The analysis of the four-point amplitude is a nontrivial demonstration 

of the consistency of OUT choice of projective transformations, since log(X) terms from pinches of 

different Koba-Nielsen variables must combine to form an object that on shell is gauge-invariant 

and proportional to the tree amplitude. 
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As our example we choose the EI ~2 EJ . ~4 Tr(T”~T”~T”~T”~) term given by 

T =x’ 2=9* 

-/ 

dir 
-ImIm 

’ 4 (IS+) r, (IIuT)~ J T d*vt d2Ys d’“~C~~z[~](i)exp~~K.jCe(vij)) 

&d i<j 
r 

x 
I 

ddT/~)~~h) (Kl,Ks,d~(~ll)d~(~i~,) + KJ,K,,c+,(F&,(&,) 

-K~~K~s~:B(Y~~)~:~(~*s) - K,Jhd&,)d~(~~~) + K3,K,3tiB(~,3)d.,(y,) 

-K,~K,J~:B(~,~)~,(~,~) + K,3Kl,~g(~~3)~:(~~,)) 

- Ks*i2~(~~l)G~!~:](~s,)1 (K,&(FI,) + K,,tis(~,,) + K,3&(&i13)) 

- Klr~a(~~*iG~[~j](~,~j2 (K&(i%,) - KIJciB(~23) - K&(&)) (7’1) 

- K,JK,,GF[~;](~,.)GF~~~](~~,) 

+ Kd&[ ;;:](h,G[ ;;](Fn) ) 

XGF[~~](--YI~)G~[~~](-~,~)G~[~~](-~~,)G~[;;~](~~,) 

where the momentum factors Kij are defined in equation (5.6) and we have integrated by parts so 

as to eliminate GB terms. 

Let us examine the massless-vector pole that arises when the loop is isolated on the last leg. 

(Higher-mass states do not contribute, since they will not yield an on-shell propagator.) To extract 

this pole, it is convenient to change cocirdinates to 

Y = y, 

rl = 43 (7.2) 

w = m2lrl 

The r] coordinate is then the size of a (small) disk on the torus which contains Y,, v2, and Q, while 

Y gives the location of this disk, and w the relative locations of V~ and Y? within the disk. 

The pole arises from the rl z 0 region, from terms which have a factor of IqI-‘-XK”/n. Terms 

with mismatched powers of 7 and q will be killed by the integration over the phase of 7, while 

terms with a higher negative power of 171 correspond to the would-be propagation of the fictitious 
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tachyon and will cancel by virtue of world-sheet supersymmetry. In the q -+ 0 limit, the Green 

functions behave as follows, 

GF[ ;;](~i,) - GF[ ;;;](F, f O(ri) 

GF [ 1 ;; (ii,s) -+ +$-(I) + O(ij) 
GF (ii,,) + +G’,“‘(l - a) t O(V) 

GF [ 1 “p; @,a) -+ +-(G) t o(fj) 
dg(F4,) --t c?,(F) t O(ij) 
~L@lS) 
I* 
d,(Q) 

with analogous form&e for the left-movers. 

(7.3) 

Looking at the region where 7 E 0, and extracting only terms with appropriate powers of 171, 
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one finds that equation (7.1) becomes 

T ,x z39’ , 4 o dlqlql-l-a(IC,.+KII+Klr)lr 

X ~=,~d~,/d~,c~~~[~](~)e”p~~K~,GsiY)) 

66 

x exp XKIZGF(~) t XKz3Gp(1 -w) 
> 

X 

[( 

~2,(17y - G~[;$F)~) (KINKS, (C~=(C# - GFW) 

+ d.&q2 (-K,,K,,k~(+~(l - W) t Kt,K&~(ij)@+ 
(7.4) 

tGF [ 1 i; (# (K,,K,,G~(J)G$==(~ -c?) - K13K2,Gr”(8)G!Fc(l)) 

- ~K,rb~(i+ (K&*(1 -J) t K&~(l)) 

X (Ku + (1 - =)Kt,) (@=(G)~ - Gp(~)f) ] 

x G~(-u)G~~(-(I -~))GF[~~](-")GF[~~](Y) 

The term with the additional explicit power of X arises from the expansion in ij of the exponentiated 

bosonic Green functions. 

Putting in the explicit form of the tree-level Green functions, we find 

I 
dlqlqj-l-a(Xl.+K~r+Kl.)/r 

(7.5) 

x (KdnG(KmKm) - Ku (Ku t &,)&(K,a,Kn)) 

where 

&(s,t) = -$ /d’w IwI-‘-~‘/“I~ -u/-l-‘+ 

&(s,t) = $ /d’w I+‘-“/“I1 - ~l-~~‘~(l -w)-1 
(7.6) 
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Evaluating the integrals gives 

where 
r(1 - Xs/za)r(l - xt/%)r(l+ X(d + t)/zx) 

J(8*t) = I?(1 + Xs/2?7)i71+ k/2x)l?(l- X(s + t)/2a) (7.8) 
Evaluating the q integral and substituting these expressions for the Zi reduces equation (7.5) 

to 

29’ 
’ =4(16x1) ,z, (knr)l -I 

~=~~d’,cG~~[~](~)~~~~K~,G~(~)) 

68 

x .( [ 1 GF ;: (ii)’ - &B(F) ') G#](-+-F[ ;;]W (7.9) 

x J(Ku, Kn) 
Km + Km f Km (KI&(&+&) -&(K1,+X1,)&) 

Using the condition (5.8) we can eliminate K,, and rewrite the ratio of momentum invariants, 

1 

= KM + Km + Km 
KU 

Km f Ku + Kn 

KU 
+ KH 

Ku + Kn -+ K,J 

KU > 
(7.10) 

KM + h-13 = 
Kll 

The last expression has a well-defined on-shell limit. 

As noted at the beginning of this section, the calculation in the low-energy limit is identical 

to one performed using the Minahan prescription, and the improper non-localities disappear in aIZ 

terms, in a manner consistent with their resolution in the three-point case. We will not present the 

details here. 

One may also calculate renormalization constants using the results of the previous and current 

sections. Such a computation is essentially identical to one done with Polyakov amplitudes and 

Mimhan’s ‘off-sheet’ prescription, so we shall not repeat it. The results of the latter computations 

[9] show that the combination of the three- and four-point renornmlization constants determine that 

the wavefunction renormalization of massless vectors vanishes at one loop. One may also extract 

a P-function from these renormalization constants. In the ir&ite tension limit, it turns out to be 

identical to the &function derived directly from the appropriate limiting gauge field theory, as of 

course it must for consistency of the results. 
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8. Resolution of the Inconsistency in the N-Point Amplitude 

In this section, we give a general argument that our choice of superprojective parameters (5.la- 

5.1~) resolves the improper non-localities in all N-point massless-vector amplitudes. The basic idea 

is that integration by parts can extract the appropriate momentum factors for bosonic terms, while 

world-sheet supersymmetry extends the resolution to fermionic terms. Integration by parts simply 

adds total derivatives to the integrand, and does not change the full amplitude. It is sufficient to 

demonstrate the resolution of the improper non-localities for a particular choice of additional total 

derivative terms. 

In the one-loop N massless-vector amplitude (2.1) we have fixed the last Koba-Nielsen variable 

to a particular value. Thus, we cannot integrate by parts with respect to it, something that would 

be convenient to do for the purposes of this section. This is easy to solve: simply fix a d&rent 

Koba-Nielsen variable, or integrate over all variables but divide by the volume of the torus @XT). 

Let us consider the region of moduli space where the loop is isolated on the N-th leg. To 

extract the massless-vector pole, it is convenient to make the following change of variables, 

Y = Y,N 

rl = YI w 

w = vi,i+ll? i = 3,4,. . , N - 1 

We will take “I to be the fixed Koba-Nielsen variable. Once again, 7 is the size of a disk on the 

torus, near Ye, which contains the points Ye,. . . , VN-~, while Y is the relative location of the the 

N-th vertex operator, and wi are the relative locations of the points within the disk. 

Under this change of variables the measure becomes 

j&b< = jd2d+i1w Irl12N-* 

In the region 7 z 0 only contributions of the form 

/ 
dl,, 1’11-1 fi I$%;/- = _ 2rz 

i<j<N X C&<NKij 

P3.2) 

(8.3) 

will yield a massless-vector pole on the last leg. Just as in the case of the four-point amplitude, terms 

with other powers of q and q will either die or fail to contribute poles. It is thus a simple matter 

of expanding the integrand in the region 7 N 0, and counting powers of r) and q in order to find 

the potential pole contributions; the right-mover Green functions (not including the exponentiated 

ones) must contribute 2 - N powers of Q while the left-mover Green functions must contribute 2 -N 

powers of 11. This means that the right-movers must have either one Gg(iij~), or two dB(cjjN), 

21 



or two GF[ z:](~jN), since otherwise the re making bosonic or fermionic Green functions (&~(i7;j), 

GF[ ;:](~ij), or EB(C<j) where i, j # N) would contribute the wrong number of powers of ?j-‘. 

Let us concentrate on those terms where YN appears only in the argument to bosonic Green 

functions. Here it is convenient to examine the amplitude (5.4) before integrating by parts. Each 

term is of course linear in EN; let us consider in turn those terms where this polarization vector 

is dotted into another polarization vector, aad those terms where it is dotted into a momentum 

vector. 

The fist of these two sub-types has the form 

Ej. EN zB(rjN) X (other faCt0rS) (8.4) 

As discussed above, if the other factors contain ii~ dependence then this term will not lead to a 

massless-vector pole on the external leg, and there will be no on-shell ambiguity. But this makes 

it easy to integrate by parts with respect to iiN. Integrating by parts turns the G, into a &B, and 

brings down a factor from the exponentiated Green functions. The right-mover term (8.4) then 

becomes 
N-l 

-~j. EN&B(~?~.N) c K&Z:B(F;N) x (other factors) 
i=l 

(8.5) 

In the limit 11 -+ 0, the bosonic Green functions simplify: 

k,(&,) --+ &B(F) + w!1 (84 

Doing the 11 integral thus gives us the pole contribution, 

Cc:‘=;’ KjN 
Czj<,r Kij = -l 

(8.7) 

where we have used the momentum conservation condition (5.8). 

For the second sub-type, where cN is contracted into one of the kj the form of the amplitude 

is 
N-l 
c ENj~8(YjN) X ( other factors) 
j=i 

(8.8) 

In this case the pole piece is 

Cycyt ENj 

Czj<NKdi 
(8.9) 

which vanishes using equation (5.9). 

Therefore, the ambiguity disappears from terms which contain bosonic Green functions of FN 

(but arbitrary mixtures of fermionic and bosonic Green functions of the other variables). What 
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about fermionic Green functions of i?N? Here we may appeal to world sheet supersymmetry, which 

guarantees that the bosonic and fermionic contributions to poles of spurious Fl-formalism states 

cancel. There is, after all, one more pinch that we can perform: we can bring VN close to all the other 

VS. This potentially leads to poies in the new throat variable 7’ representing the contribution of 

the spurious FL-formalism tachyon. World-sheet supersymmetry, which is preserved by our choice 

(5.la-5.lc), assures us that we can add total derivatives to the amplitude so that the offending 

terms have the form 

Go’ (dp($)s - Gp(Tj’)‘) x other factors (8.10) 

so that the spurious state disappears explicitly. For this cancellation to occur consistently in all 

terms in the amplitude the kinematic structure of the terms containing fermionic Green functions 

of UN must be identical to the terms with bosonic Green functions of YN. In particular, any on-shell 

ambiguities must have disappeared from the terms with fermionic Green functions, leaving behind 

the same constants as in the bosonic case. We have seen this fermionic-bosonic matching explicitly 

in the form of the three- and four-point amplitudes after integration by parts, shown respectively 

in equations (6.1) and (7.1). 

The form of the amplitude is similar at higher loops, and thus the choices analogous to equa- 

tions (5.la-5.1~) will resolve ambiguities there in a similar fashion. 

9. Consistency in the Two-Point Amplitude 

In the two-point Polyakov amplitude, there is only one momentum invariant; and in any event, 

no pinch is needed to isolate the loop on an external leg, since it is already there. So in this case 

there will be no on-shell momentum/pole ambiguity. 

Nonetheless, there is a consistency requirement. As discussed in sections 5 and 7, the wave- 

function renormalization extracted from the two-point amplitude must match that deduced f&n 

the combination of the three- and four-point amplitudes; that is, it must vanish. As we shall show, 

this requirement, along with the requirement that the spurious F,-formalism tachyon decouple off- 

shell, fixes the parameters of the projective transformations to be of the form given by equations 

(5.k5.lc). 

How do we adjust the parameters of the projective transformations so the wavefunction renor- 

malization vanishes? For the two-point function the number of possibile choices for the &J de- 

pendence of the 5i is quite small. It is not sensible to have the 4i depend on the Oil since these 

are parameters which were introduced by hand to select the terms multi-linear in the polarization 
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vectors. It is also not difficult to show that the only possible choice which can yield a vanishing 

wavefunction renormalization is 71 m 023 and 41 o( 013. 

Taking 71 = 91&Z and ~2 = #1813, where the 9i are arbitrary e-number parameters, and 

substituting&o the general covariant loop calculus amplitude (2.1) yields the two-point amplitude 

(see also Appendix n) 

A1= ’ --x-‘(2g)Z Tr(T0’P) /, 
32r’ 1 

/ (@%sdsa) /Td%(IW~C;#](T) 

6.i 

x /e- rrm”‘d,j Xkq,-~Imuld2/Xk:/* e+, . WB(U)) 

[ (- 
~1 . et Gs(h) + GF 

X ( M-1. kaGF i: (~12) - iXkf&%c-““‘J,~g1/4r + iXk:&%e- I 1 
- Xc, . kl c, . ks GB(YU) t (i&&e (’ 

-an7i’ t i/2)) (d,(Fn) t (iEJje-al’Yy f i/2)) 

- h . kt Ea . h GF “p; (ib) t s&h) (GF[ ;;](i%) + $&,,,] ([I 
x GF[~~](-~II,GF[~~](~II, 

(9.1) 
The wavefunction renormalization is entirely determined by the coefficient of the Ed ~2 term, 

while the renormalization of the “gauge-fixing parameter” depends also on the longitudinal terms. 

The former coefficient must vanish no matter what the string model, and so the fermionic and 

bosonic contributions must vanish independently. 

Since two of kl. &a, kf , and k: are independent, requiring the fermionic contributions to vanish 

tells us that 

g, = ~&+GF (9.2) 
while requiring the bosonic contributions to vanish tells us that the bosonic integmnd, 

le- *Imvld,I *k~/~~,-~1murd2/Xk~/* 
exp(&. W&+&,) (9.3) 

must be a total derivative in p1 or pa. This can happen only if the factors other than ~:B(Y~z) com- 

bine to yield a constant; taking the logarithm of these factors and using momentum conservation, 

we have the equation 

Xk;/xlogle-“‘mY’ d,l + Xk;/?rlogle- rlmwd~I + Xk1. ksGB(v12) = constant (9.4) 

which has the solution 

Id,/ = constant x e”lm” exp(nGs(y,)/2), Idal = constant xe*Im”’ exp(nG~(~11)/2) (9.5) 
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The constant factors merely result in factors of (constant)-k! in front of the amplitude; they are 

irrelevant and we shall drop them. 

The astute reader will have noticed that this does not quite make the bosonic terms a total 

derivative. The problem is that there is a ‘surface term’ because the derivative of the GF[;~](v) 

with respect to ij is not zero but is rather a delta function, as the Green function has a simple pole 

at Y = 0. Having fished this out, however, we note that it is a rode sild: it is a contact term of 

the Green-Seiberg type [19]. In the superstring case, these terma are an artifact of the spurious F1 

formalism tachyon and can be eliminated by an appropriate analytic continuation in moments. For 

a bosonic string the tachyon is physical, but again an analytic continuation eliminates the contact 

terms. To make the analytic continuation, integrate by parts to eliminate the C?B before fixing 

the choice (9.5); with an appropriate choice of external momenta there are no surface terms. At 

the end, when the choice (9.5) is substituted the c I . c1 term in the amplitude vanishes identically. 

This technicality does not arise in higher-point functions, since there the momentum invariants are 

in general non-vanishing off-shell, and the leading uncancelled contribution from the left-movers is 

not Y-’ but rather v-‘-~~u~~*. 

While we are disposing of technicalities, we may also note that the region where the two 

Koba-Nielsen variables come together, yielding a dilaton tadpole, gives no real difficulties. In a 

superstring model with any space-time supersymmetries (or an Atkin-Lehner symmetry [20]), this 

tadpole vanishes identically. 

It is amusing that with the choice (9.2), the fermionic Green function contributions to the 

longitudinal terms vanish automatically. Imposing the condition that the spurious tachyon of the 

Fi formalism drops out of the iongitudiml parts of the amplitude means that we must also choose 

e, = I 'y(i3f3(&2) i-i/2) izs = I 'F(~B(F~) +i/2) (9.6) 

which also makes the contributions from the bosonic Green functions vanish in the longitudinal 

terms. (A different choice of the Ei will not alter the wavefunction renormalization but will lead to 

a nonvanishing renormalization of the longitudinal pieces.) 

The choice of superprojective transformation parameters (9.5-9.6) is exactly that given by 

equations (5.1~5.lc), which as shown in previous sections also resolves the inconsistencies in the 

three- and four-point amplitudes. 

10. A Bundle of Projective Transformations 

As we saw in sections 6-8, the momentum conservation conditions (5.8) and (5.9) s&iced to 

resolve the on-ahell ambiguity in any amplitude of the form given by equation (5.4), where the 
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Green functions are the same as those appearing in the standard Polyakov amplitude, but their 

coefiicients are a bit different. 

For the case of the bosonic string, a more general set of choices of the projective transformation 

parameters that preserves the momentum conservation conditions is given by 

ldil = llie-Imui exP(* fI: afkGB(pjk)i2) 
j<k 

Ei = ify(? bijCB(Fij) f ;, 

j=l 

where the Q are arbitrary constants, and the coefficients a:, and b;j satisfy 

and 

?a;* = 1 ) 
j<k 

ajj = 0 

$ bij = 1 7 bii = 0 

(10.1) 

(10.2) 

(10.3) 

(10.4) 

In this case, the momentum invariants are 

Kdj = hi. kj + 5 afjkt/2 
I=1 

(10.5) 

Eij = c; . kj + bijci ki. (10.6) 

which do indeed satisfy the fundamental conditions (5.8) and (5.9). The c;, which determine the 

form of the longitudinal ci. ki terms, must be associated with Green functions of the form L’,(iiij); 

otherwise these terms could not be combined with the nonvanishing on-shell terms to form the Edj. 

For the kf pieces there is no analogous restriction and the ld:l can depend on all GB(Vjk). 

In the superstring case, the requirement that the cd. ki terms combine with the Ci. kj to form 

the &‘ij forces the 7; to depend only on the G~[s$~ij). Th e requirement that the spurious FI 

formalism states decouple off-shell demands a cancellation between bosonic and termionic terms that 

in turn relates the ldil and Ei to the Ti Here, a more general set of super-projective transformation 

parameters is 

Idi1 = qie*lmY’ eq(r? aijGB(vij)/2) (10.7) 
j=l 

Ei = i~(~O,ijb~~F~jj +i/2) 
I j=* 
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,yi = -&$ eiwci q-- $ a&F[ ~$%h (10.9) 

where the coefficients a;j satisfy 

gaij = 1 v a<i = 0 (10.10) 

(The requirement of cancellation of the spurious Fl formalism states is responsible for the ap- 

pearance of the aij in all three paranters.) Such a choice of superprojective parameters yields an 

amplitude of the form given in equation (5.4) but with 

K;j = ki * kj t a<jkf/2 t ajikj /2 (10.11) 

and 

Eij = E; ’ kj t aijei. ki (10.12) 

which also satisfy the fundamental conditions (5.8) and (5.9). W e d o not know if these choices are 

the most general ones possible, but the calculation of the two-point amplitude in section 9 suggests 

they may well be. 

From amongst the choices described in this section, the crossing symmetric one (all aij equal) 

is the one that would likely emerge from a consistent covariant closed string field theory. 

What about bigher loops? We conjecture that the prescription is the same as at one loop, 

namely, taking the standard Polyakov amplitude and replacing ki. kj with Kij and E;. kj with Eij, 

where the K<j and Eii are chosen from the sets described in this section. This yields the higher loop 

analogs of equation (5.4). It is worth noting that at tree level, this prescription yields amplitudes 

invariant under the same projective transformations that leave the on-shell amplitudes invariant. 

11. Conclusions 

In this paper, we have presented an off-shell string scattering amplitude for massless-vector 

external states. This amplitude may be viewed as a special case of the general amplitude in the 

covariant loop calculus, but unlike the latter, our amplitude possesses a well-defined on-shell limit. 

Likewise, it gives a well-defined meaning to the Polyakov amplitude in those regions of punctured 

moduli space where the latter is ill-defined. 

Our off-shell amplitude gives a consistent set of renormalization constants for amplitudes with 

different numbers of external legs. This requirement may seem trivial to a field theorist, but as 

we have seen, it is in fact quite non-trivial for amplitudes in a first-quantized formalism. As a 
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further consistency check, the infinite-tension limit yields the correct &function for the limiting 

field theory. We have shown explicitly the resolution of the ambiguities and the consistency of the 

renormalization constants in the tww, three-, and four-point amplitudes; and we have given an 

argument for the resolution of the ambiguities for all N-point amplitudes. 

While we have considered only massless-vector external states in this paper, we expect similar 

ambiguities and similar resolutions for any gauge particle, such as the graviton. It may also be 

possible to extend the ideas presented here to the massive states of the string. 

The consistency requirements satisfied by the off-shell amplitudes presented in this paper must 

also be satisfied by amplitudes arising out of any string field theory: the latter must resolve the 

on-shell ambiguities of Polyakov amplitudes in a manner consistent with gauge invariance. For 

‘string field’ formalisms not directly based on an underlying string-field action, the consistency 

requirement on renormalization constants is also a non-trivial constraint. The unexpected fact that 

our amplitudes are fully modular-invariant of-shell may give an important clue to the structure 

of a consistent string field theory. Moreover, it may be possible to construct a string field action 

from the off-shell amplitudes considered in this work. 
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Appendix I. Bosonic String Covariant Loop Calculus. 

In this appendix we briefly review the bosonic string covariant loop calculus and present the 

open bosonic string massless-vector amplitudes with emphasis on their projective invariance. 

One of the key observations of this paper is that the projective invariance inherent in the 

N-string vertex can be used to make off-shell amplitudes well defined. The projective invariance of 

the amplitudes was well-known in the early days of string theory [21]. Among the variety of choices 

that have appeared in the literature, the Lovelace choice (which has the advantage of manifest 

cyclic symmetry of the vertex and is defined in terms of only the Koba-Nielsen variables) is the 

preferred choice in the operator approach of Di Vecchia et al. [3]. 

In the path integral approach of Petersen et al. [4], the projective transformations arise nat- 

urally from the sewing process and are left as a manifest invariance of the amplitudes; there is 

no need to specify the detaiied form of the V;‘s. In this approach the three-vertices are used as 

basic building blocks which are sewn together to form the amplitudes. One sews by integrating the 

physical and ghost fields living on the punctured Riemann surface in question; boundary conditions 

at a given puncture are given by ‘boundary’ fields that are singular at that puncture and contain 

1 information about the external string state corresponding to the puncture. These ‘boundary’ fields 

are then written as ‘standard’ fields, singular at z = 0, acted on by some projective transformation 

Vi(z) that moves the singularity from z = 0 to the real puncture at .z = L;. That is, the Vi must 

satisfy the condition (2.5). This does not totally NIX Vi (which has 3 degrees of freedom). 

For our purposes it is important to choose the Vi’s to depend on the Teicbmuller parameters. In 

the path integral approach of ref. [4] the vertex is always constructed for fixed but arbitrary values 

of the moduli; dependence on modoli which arise in future sewings is no problem. Equivalently, 

it is a simple matter to re-arrange the sewing process so that all the loops are fist sewn from the 

fundamental three-vertices into “tadpoles”. Then the various three-vertices and tadpoles are sewn 

together to form the N-point amplitude. This re-ordering corresponds simply to rearranging the 

order of the path integrals. Once a three-vertex is sewn into a tadpole the modular parameter is a 

well defined quantity which can then enter into the Vi’s. 

In the operator form of the covariant loop calculus, each asymptotic string state in an N-string 

scattering is represented by its own distinct Fock space. The N-string g-loop vertex is then simply 

a vector (VN,,~ in the direct product space, with the property that the matrix element 

(VN,,l~ IQ4 (1.1) i=, 
is the amplitude for scattering of the N string states I+;). 

29 



After eliminating the ghost degrees of freedom (and ignoring the Ghan-Paton factors), the 

N-string vertex can be mitten in the compact form [3, 221 

(VN,,l = / Jvrf,ol~ 

where (V~,ol is the N-string tree-vertex. The latter may be written as 

(Vwl = / fj (d*i”(&+q &fi;( 2 = o,o., 
kl 

exp c 2 $3:B,-h[v,(z) - Vj(Y)] 

1 i<j n,m=O 
2 

r=y=o 

exp ; $ -g ~ki~a:lnv:(z) 
1 ,=I n=o I 1 r=o 

where L is the loop-correction factor 

a5 = fi exP h 2 $a:OrN(V.(*),V,(Y)) 
I n.m=ll 1 ‘I 

u’- 

i,j=l 
ml 

r=y=o 

(I.21 

(I.31 

(I-4) 

The ok’s are the oscillator operators of the i-th string Hilbert space, normalized in the standard 

fashion 

[(a;)+,ag = -d,,, , n,m > 0 ; a;=Gk;, n=o. (I.51 

In the general case the function N(z, y) is quite complicated [3], but for g = 1 a considerable 

simpiScation occurs. If we use overail projective invariance to choose the fixed points of the 

Schottky generator as 7 = co and C = 0, we may mite 

qz, y) = h 

[ 

fi (2 - P”Y)(Y - P”Z) 

“=I ZY(l - n-1’ ]+&+:)’ (1.6) 
= ~B(% Y) - hl k - Yl 

where q = e’*ir. We may also choose z. = q, zb = C in dv.b,, thereby obtaining the integration 

measure for the Telchrmiller parameter 

(1.7) 

where we still have the freedom to fix one of the Kobe-Nielsen variables to be tC. 

The one-loop amplitude with external massless vectors is obtained by saturating the N-string 

vertex (1.2) with N massless-vector states. Introducing Grassmann parameters which select those 
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terms that are multi-linear in the polarization vectors, the amplitude can be written as (up to 

normalization) 

fi [/dzi e(zi - %+I) (vi’(o))““: eq( ;&‘f?ilf?irki. Ei,;;;l)] kl 
~=+ki. .- (. .) k,GB L,, z, + ejlej2&ki . EjL3, C:B(Z<, Zj) 

+ ~O~~O~l~j~Oj~~i~ Ej~z;~*i~~(Z~~.Zj)) 

w 

where we have used N(r, L) = a,N(z, z) = 0. 

Converting to the annulus variables Y; = hy/2xi and i = hq/2ri the amplitude is 

M = 
I 

fidt&d&, 
i=l I 

d+-“” Irinr)-dC1 (-i,.)-d/2 

c 

fi [lb (e-2~i”iV~(o))“‘k’ erp(J2a’eiIei2ki. Ei ;n(F’i (;;($ - I))] 

’ 

(Lg) 

geq(a’k. kjcB(vij) - ejl9g&ki. ajbB(vij) 

where 

and i,(v) G BytiB(v). 

CS(Vij) = ~:8(*ir Lj) - ~ln(=irj) (1.10) 

From the above expression we may, for example, easily calculate the two&on amplitude 

Ma = 
I I 

dT dy e-l.i~fi(l _ e2*inr)-d+l (-ir)-d/a (,-~*iY~v~(o))~‘k:(e-‘*‘~v~(o))“’k: 

erp(2a’kt. k2e:B(vll)) ( ~1 . &("~a) - 2a'c1 . k, ~2 k2 GB(vll) CL 

x &a) - iXP”~ ( 
V(O) 

(&yO))l + ix >( C?B(Y~,)- i*e'*'" 
vl'(o) + 4 vaYo))2 

(1.11) 

where we have used momentum conservation and ~2 is fked. 

The essential difference between the bosonic left-movers of the h&erotic models used in the 

text and the standard d = 26 open boaonic string discussed here is that some coordinates are 

internal and have been fermionized. (In addition, there are the usual closed string modScations of 
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the zero-mode contributions to the Green functions.) These internal coordinates are not relevant 

to the extension of Polyakov amplitudes to off-shell quantities since off-shellness is a property of 

the external momenta Thus, the off-shell amplitudes for the left-movers of a four-dimensional 

heterotic string may be determin ed using the vertex (1.2) for external oscillators and the usual 

on-shell results for the internal oscillators. 

Appendix II. Superstring Covariant Loop Calculus 

It is the superstring covariant loop calculus that is more relevant to this paper, since the 

right-movers of the heterotic string considered in the text may as usual be considered as an open 

superstring (except for minor differences in the bosonic zero-mode contributions), and it is amon& 

the right-movers that all the interesting action happens. Fortunately, for those sectors where there 

are no technical di&ulties arising from fermionic zero modes, the formalism is similar to the bono& 

string case. 

After eliminating the ghost degrees of freedom, the N-superstring vertex in the Neveu-Schwars 

sector can be expressed in the compact form [3,4] 

where (VN,O~ is the N-string tree-amplitude [23] which may be written as [3,4] 

(‘N@i=/fi (DzlO)) &fii(~=‘-‘,oa, I 

Z=Y=O 1 

The loop-correction factor is 

L = fJ exp 
i,jd [ 

; g ~o’“~D:mN(Vi(z),vj(y)) 
n,m=O bl! z [ml! I I Z=Y=0 

The n and m run over both the integers and the half-integers with 

bl = 
n for n integer 

n - i for n half odd integer 

(E.3) 

(E.4) 
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The Ah’s are the oscillator operators of the i’th string Hilbert space 

Af = a; n, m = Al, f2,. . . 

A; = $1 n,m= *’ 2 . . . 
2’ 2’ 

(n.5) 

with ai = &k+ The superprojective transformations are constrained by the condition (2.6). 

In these form& we used superspace notation; if 2 = (z,f?) and Y = (y,C) are two points in 

superspace then 

z-Y=z-y-e{ (W 

and D = & + SE is the superderivative satisfying the supersymmetry algebra D’ = ~3. 

Just as in the bosooic case, the function M(Z, Y) appearing is in general quite complicated 

[3,4], but for 9 = 1 a considerable simplification occurs. If we use overall superprojective invariance 

to choose CT = (co, 0) and T = (0,O) as the fixed points of the super Schottky-generator, for the 

annUllS 

Mtz,y) = In 
1 
fi (2 - 0 - w+)(Y - v= - cw+) 
T&=1 ZY(l - n”Y 

= G(Z,Y) - ln(Z - Y) 

= G,(Z, Y) - h(Z - Y) t @F(6 Y) t 5 
with q = esrir. The two possible spin structures correspond to the two signs one can choose for 

q’/’ in the d = 10 superstring. 

we may dso choose z,, = u, zb = T in dV.a, thereby obtaining the integration meawre for 

the TeichmiiUer parameter of the annulus 

dv dq - = -2& (~)“‘yj (yJd-’ 
(Nobe UI.8) 

and once again, we still have the freedom to fix one of the Koba-Nielsen variables to be zC. 

Saturating the N-&ring vertex with N massless-vector states, the contribution to the Euclidean 

amplitude is 

fi [/ dzideid~i(D~F(o))sn’k~ erp [&‘&ki . ci c;F;;;l]] 

g=rp [a’k ’ kjG(Z<, Zj) + &tijki. EjDZiG(Zi, Zji 

- ib<#je<. Lj Dz,Dz,G(Zi, Zj)] 
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where we have introduced auxiliary Grassmann variables 4i which select the terms multi-linear in 

the polarization vectors. In obtaining this amplitude we used the superconformal condition 

my(Z) = vy(Z)DViF(Z) (X10) 

as well as M(Z, Z) = DAf(Z, Z) = 0 and ($(,z)’ = 0. 

By expanding the superfields, changing to the annulus variables Vi and T and performing the 

resealings 

flj 3 i&e*'"~O; & -t -i&jZeT'vd$~ ci -+ ici (II.11) 

we obtain the form of the right-movers’ contribution to the amplitude (2.1) given in the text 

M = &&e-i” fj (’ -;T;2;-;;“‘) d-s (g) d’s 
c 

(II.12) 

g=zp [2a’h ’ kj(e:B(Yij) - e#jeF(vij)) 
+ i&(Oi+jki . Ej + &Ojkj. bi)cF(Vij) - i&(Oi&kj * E; - 8j4jki. Ej)&B(Vij) 

+Ci ’ Cj#i4jEF(Vij) t Si *Cj&&iOj+jjE~(Vij)] 

where Cir di, 7< are free parameters in the superprojective transformation (2.3), E,(Vij) is defined 

in eq. (1.10) ad 6’F(Vij) s 2+C?@F(zi,zj). The resealing of the 0; and 4; by ai”“# 

is a simple way to include the Jacobian arising from the change of variables from the +i to the 

vi = lxzi/2ri, while the factors of fi arise from the choice of conventions used in the text. Note 

that if we take the 7; to depend on the 6’i+l as in sect. 3 then we must include an extra factor of 

i&%%'*"'+L arising from the resealing (II.11). (Of course, this factor is not important since we 

can always absorb it into the T;.) An overall complex conjugation (not including the k) as well as 

a rotation to Minkowski space must be performed in order to obtain the formulae of the text for 

the right-movers. Note also that the open string Green functions of the appendices are normalized 

differently then the closed string Green functions of the text. 
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From the general amplitude (E9)we may, for example, easily calculate the two-glum amplitude 

s F 

+ Za’c1 ’ krc, . kl ,&,&$;s 
I P 

- Dz,G(z~,zz) ,&;,$ - ~z,G(-G,&) >I 
(lI.13) 

The form of this amplitude corresponds to the right-mover contribution of the closed string ample- 

tude (9.1) before t&g the 7i to depend OU the Bi and integrating OV.3 the 0,. 

Appendix III. The KLT Formalism 

In the text, ye have presented the N-point massless-vector amplitude (2.1) using the Kawai, 

Lewellen and Tye (KLT) [12] formalism for internal Bard&i-Halpem [24] world-sheet termions. 

These internal fermion contributions require no modification for use in the off-shell amplitudes con- 

sidered in this paper. In the KLT formalism, the boundary conditions for the complex world-sheet 

fermions are represented by vectors Wi = (II. ..lfpIrI . . . rlo), where the li component signifier 

that the ith left-mover fermion picks up an exp(-2nld) phas e when going around the appropriate 

(world-sheet space or time) closed loop. A model specified by a set of basis vectors WC is a consis- 

tent string theory if it satisfies certain constraint equations, eqs. (3.33-35) of ref. [E?]. The space 

boundary-condition vectors specify the sectors, while the time boundary-condition vectors deta- 

mine the generalized GSO projections that constrain the spectrum. The mass squared of a given 

state is determin ed by adding the quanta of the fermionic world-sheet oscillators to the vacuum 

energy with the usual let%-right level-matching. Modular invariance requires that in calculating the 

partition function (or scattering amplitudes) we sum over time- and space-boundary conditions, 

with coeflicients given in eq. (3.32) of ref. [12]. In the N-gl uon amplitude (2.1) these coefficients 

are the C;. 

Appendix TV. One-loop Closed String Conventions 

We define theta functions for general twisted boundary conditions by 

5 [I (VIT) = c= li(n+~-l/r)‘r,s*i(n.P-l/a)(“-~-l/s) -22 
while the Dedekind q function is 

q(7) = ,+P fj (1 - eZ*inr) 
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The bosonic partition function is 

Z,(7)= (rl(r)ii(r)AG)2-d W.3) 

where d is the number of spacetlme dimensions. 

We defme 21 [;](r) to be the partition function for a single left-moving complex fermion with 

[ ~1 boundary conditions, 

2, [J(r) = n [piJLrpi(&-p)&] = e-rri(l"-ui(~c~B)~[~] (0 17) (N.4) 

where the phase is present in order to be consistent with the KLT definition [12]. It is really 

irrelevant, and could be absorbed into the definitions of the summa tion coefficients C$. 

Putting the pieces together, the complete partition function for the set of fermions with [$] 

boundary conditions is 

= (q(+jo)&qd 
‘*=-I, e-lryl/3-Pci)(1/s+P‘i)g[usi] (0, T) ‘-WI rI n efri(lll-a*.r)(l/S+B*~)~[=n~] (0 1 T) li 

i=l 11b) id si(r) 

PJ.5) 

The bosonic Green function is given by 

1 
GE(Y) = -; In 2m -l(h.Y,~/Imr~Cl (VIT) 

“[iI (0 17) 
In a slight abuse of notation, we write the correlation function for right-movers z.3 GB(J) although 

in fact it is equal to Gs(v). 

A dotted variable, for our purposes, will always be taken to signify differentiation with respect 

to F, so that 
1 a[;] (i7i -i) &&7) = E - - 

2*9[3(iq -5) 
(Iv.71 

The fermionic particle correlation function GF[~](Y) and anti-particle correlation function 

tiF[ z](v) are defined as follows (excluding the case a = p = 0): 



where the last equality derives from a theta function identity. 

Underr+r+l, 

-h(7) --+ 2B(7) 

21 [I ; Cd * = ir(&+l/6)q Q [ 1 P-0 
GL+) + GE@) 

&(ii) + &(iq 

GF[;]w - GF[p “,](4 
and under r + -I/T, 

WT) - 247) 

21 [I ; CT) * = 2ti(~-l/1)(/9-l/s)21 P [ 1 --Q 
GB(Y) * GB(Y) + y (N.10) 

&I+.) -* (-q&B(F) 

W.9) 

GF[ ;]W - t-7) GR[ _p,]W 
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